Research Article
Accurate Base Station Placement in 4G LTE Networks Using Multiobjective Genetic Algorithm Optimization
Table 1
Simulation parameters used in the multiobjective genetic algorithm.
| Operation/parameter | Value(s) of options/parameter |
| Population size | 10, 40, 70, and 100 | Population type | Double vector | Elite count | 1 | Pareto fraction | 0.75 | Crossover fraction | 0.8 | Mutation function | Adaptive feasible | Migration direction | Both | Migration interval | 20 | Constraint tolerance | 1.0000e-03 | Measure function for distance | {@distancecrowding ‘phenotype’} | Time limit | Inf | Fitness limit | -Inf | MaxStall generation | 100 | MaxGenerations | of variables | MaxTime | Inf |
|
|