Research Article

Privacy-Preserving Federated Graph Neural Network Learning on Non-IID Graph Data

Algorithm 1

The federated DeepWalk framework.
Input:: the set of clients
  Gi: the local subgraph hold by ci
  Uk: the public nodes shared among C
Output: the matrix of node representation
  of Gi
 1: LOCAL CLIENTS:
 2: for each client ciC do
 3: Compute the DeepWalk model weights Φi
 4: Generate the public nodes’ embeddings Xi of Uk
   from Φi:
 5:  
 6: Upload Xi to the server
 7: end for
 8:
 9: while not converge do
 10: SERVER:
 11: for each ikdo
 12:  for each do
 13:   Align Xj into ci’s space:
 14:  end for
 15:  Aggregate all the aligned embeddings with
 16:   
 17:  distribute to client ci for local update
 18: end for
 19:
 20: LOCAL CLIENTS:
 21: for each client cC do
 22:  Substitute the public nodes’ embeddings in Φi
    by
 23:   
 24:  Initial the DeepWalk model with
 25:  Compute the model weights Φi
 26: end for
 27: end while
 28: return the matrix of node representation
  of Gi