Research Article

Privacy-Preserving Federated Graph Neural Network Learning on Non-IID Graph Data

Algorithm 2

The federated GAT framework.
Input:: the set of clients
  Gi: the local subgraph hold by ci
  Uk: the public nodes shared among C
Output: the node embeddings of Gi
 1: LOCAL CLIENTS:
 2: for each client ciC do
 3:  Compute the GAT model embedding
 4:  Generate the public nodes’ embeddings Xi of Uk
    from the intermediate Hi:
 5:    
 6:  Upload Xi to the server
 7: end for
 8:
 9: while not converge do
 10:  SERVER:
 11:  for each ikdo
 12:   for each do
 13:    Align Xj into ci’s space: Xji = WjiXj
 14:   end for
 15:   Aggregate all the aligned embeddings with Xi
 16:    
 17:   distribute to client ci for local update
 18:  end for
 19:
 20:  LOCAL CLIENTS:
 21:  for each client ciC do
 22:   Take as new input weights
 23:   Compute the GAT-model embedding with loss Lnew
 24:  end for
 25: end while
 26: return the node embeddings of Gi