Advances in Civil Engineering
 Journal metrics
See full report
Acceptance rate19%
Submission to final decision113 days
Acceptance to publication22 days
CiteScore3.400
Journal Citation Indicator0.370
Impact Factor1.8

Effect on Sulfuric Acid Resistance and Shrinkage of Concrete Incorporating Processed Bagasse Ash and Silica Fume

Read the full article

 Journal profile

Advances in Civil Engineering publishes original research articles as well as review articles in all areas of civil engineering. The journal welcomes submissions across a range of disciplines, and publishes both theoretical and practical studies.

 Editor spotlight

Chief Editor, Professor Vipulanandan, is based at the University of Houston and his current research interests are in geotechnical, materials and geoenvironmental engineering.

 Special Issues

We currently have a number of Special Issues open for submission. Special Issues highlight emerging areas of research within a field, or provide a venue for a deeper investigation into an existing research area.

Latest Articles

More articles
Research Article

Research on the Application of Prefabricated Load-Bearing Structure in Prefabricated Roadway in Filling Body

The re-excavation roadway in the filling body is a common engineering demand in mines. In order to solve the problem of instability and failure of the filling body caused by the excavation disturbance in the filling body and improve the comprehensive economic benefits of the technology, it is proposed to use the filling body formed by membrane bag filling in the goaf and the steel arch frame to form a prefabricated load-bearing structure, reserve the required roadway space, avoid the safety risks caused by roadway excavation, and reduce the difficulty and cost of roadway support in the later stage. Based on the background of a mine goaf, the mechanical model of the load-bearing structure is established, and the analytical solution of the bearing capacity of the steel arch is obtained. The optimal ratio of the membrane bag filling of the load-bearing structure is obtained by indoor test, and the deformation of the surrounding rock and the distribution range of the plastic zone after the formation of the reserved roadway are numerically simulated and analyzed. The results show that the best cementing material is cement : fly ash of 8 : 2, and the ratio of cement to sand is 1 : 3. The vertical displacement of the roof is 45.1 mm, the vertical displacement of the floor is 5.1 mm, and the horizontal displacement of the left side is 55.5 mm. The load on the load-bearing structure is within the allowable range, and the field monitoring results show that the deformation of the reserved roadway is small. The research results can provide reference for the prefabricated roadway engineering in the filling body.

Research Article

The Personalized Thermal Comfort Prediction Using an MH-LSTM Neural Network Method

As demand for indoor thermal comfort increases, occupants’ subjective thermal sensation is becoming an important indicator of the building environment. Traditional models like the predicted mean vote-based model may not be reliable for individual comfort. This study proposed the multihead long short-term memory (LSTM) model to reflect physical and environment-driven data variation. Controlled experiments were conducted with individual temperature measurements of six participants, and the collected data showed significant potential to predict individual thermal comfort using a model trained for each person. The results derived from this study can be utilized, in future, for predicting the thermal comfort and for optimizing the thermal environments using personal body temperature and surrounding environmental data in a space where mainly independent activities are performed. This study contributes to the relevant literature by suggesting a method that predicts thermal comfort based on the multihead LSTM method.

Research Article

Expression and Analysis of Uncertainty in Deep Foundation Pit Design Scheme Decision-Making

The burgeoning urbanization of major cities has precipitated a critical examination of deep foundation pit projects, with escalating costs, protracted construction phases, complex site conditions, and specialized technical requirements. Selecting the optimal design scheme from multiple alternatives in a multiattribute decision-making environment poses a significant challenge. This study presents a novel model tailored for the design of deep foundation pits in design-build (DB) contracting projects. The model combines multiattribute ideal point theory with the analytic hierarchy process to evaluate 22 key factors and their uncertainties. It computes the deviations of potential design schemes from ideal benchmarks across all considered attributes. By employing the lexicographic hierarchy aggregation operator, the model aggregates group-level deviations and linguistically weighted evaluations to calculate a comprehensive score for each design scheme. This approach aids in identifying the most suitable design to meet the deep foundation requirements of DB projects. The effectiveness of the model is demonstrated through its application in the decision-making process for a commercial hotel’s deep foundation pit design scheme. The empirical findings affirm the model’s ability to identify critical factors and accurately assess their impact on engineering design decisions in DB contracting projects. Among the four evaluated designs, the continuous retaining wall scheme achieved the lowest group deviation score, marking it as the preferred option. Consequently, this research offers a robust framework for making informed decisions in the design of deep foundation pits within DB contracting projects, effectively handling the complexities of uncertain linguistic evaluations and the collaboration of multiple attributes.

Research Article

Response and Damage Characteristics of Segmental Tunnel Lining under Various Dynamic Load Conditions

This paper investigates segmental lining, developing a numerical model to explore the dynamic interaction between saturated soil and the lining structure, and analyses the effects of the angle of incident load and the wavelength-to-diameter ratio on the displacement, deformation, and distribution of the plastic zone of the structure. The findings demonstrate that the structure experiences vertical compressive deformation during ground shock predominantly. The structure can be categorised into the major deformation region (with an angle within 60° of the vertical direction) and the minor deformation region (with an angle within 30° of the horizontal direction), determined by the structure’s radial deformation. The maximum radial velocity of the nodes in the major deformation area is greater and swifter, whereas the maximum radial velocity of the nodes in the minor deformation region is lesser and mostly equivalent in extent. The maximum radial displacement of the nodes in the major deformation area is highly receptive to the loading wavelength–diameter ratio (L/D) (the ratio of the load wavelength to the structure’s outer diameter) when the wavelength-to-diameter ratio (L/D) is small (1 ≤ L/D ≤ 5). Conversely, the maximum radial displacement in the minor deformation area is considerably sensitive to the wavelength–diameter ratio when 5 ≤ L/D ≤ 30. The total displacement and velocity of the structure remain unaffected by the angle of load incidence. However, it affects the maximum deformation of the structure as well as the location where the maximum node velocity occurs. In addition, the joint surface of the structure experiences the highest plastic strain at an angle of load incidence of 60°.

Research Article

A Semantic Approach to Dynamic Path Planning for Fire Evacuation through BIM and IoT Data Integration

Fire evacuation path planning involves multiple data sources. In order to develop a dynamic planning, a comprehensive knowledge of the environment involving building information and fire development is required. This article presents a semantic approach that integrates Building Information Modeling (BIM) and Internet of Things (IoT) information to provide a data foundation for dynamic path planning. First, a fire evacuation (FE) ontology is introduced to fuse both knowledge and information relevant to dynamic path planning. Next, a dynamic knowledge graph that evolves according to the development of fire situation is instantiated based on the relevant FE ontology. Finally, to validate the feasibility of the semantic approach based on the ontology and knowledge graph, an example of application is conducted using a specific building as an example. This study provides a data foundation for more intelligent and precise decision-making in fire evacuation scenarios and offers a new approach for safety design and management in the field of construction.

Research Article

Experimental Study on Mechanical Properties of CFRP-Confined Concrete Columns under Continuous Semi-Submergence of Sulfate

To investigate the mechanical properties of carbon-fiber-reinforced-polymer (CFRP)-restrained concrete in a saline soil environment, the degradation of the mechanical properties of CFRP-restrained concrete columns under the effect of continuous sulfate semisoak erosion is investigated based on sulfate continuous semisoak erosion, and unrestrained concrete columns with the same specifications are used in comparison tests. The results show that the strength, stiffness, and ductility of both plain concrete columns and CFRP-confined concrete columns first increase and then decrease after the continuous semi-submersion erosion by sulfate; compared with plain concrete columns, the decline rates of strength and stiffness of CFRP-confined concrete columns are significantly lower, and the CFRP demonstrates a certain protective effect on the core concrete. Through a regression analysis of experimental data, strength and ultimate strain models of CFRP-confined concrete columns under the continuous semi-submergence of sulfate are proposed based on the existing ultimate strength and ultimate strain models of CFRP-confined ordinary concrete columns, and a stress–strain model of CFRP-confined concrete columns under the continuous semi-submergence of sulfate is established. Based on a comparison with experimental data, the model prediction curves indicate good agreement with the experimental curves and can therefore provide a theoretical basis and practical reference for CFRP-reinforced semi-submerged concrete in saline soil areas.

Advances in Civil Engineering
 Journal metrics
See full report
Acceptance rate19%
Submission to final decision113 days
Acceptance to publication22 days
CiteScore3.400
Journal Citation Indicator0.370
Impact Factor1.8
 Submit Check your manuscript for errors before submitting

We have begun to integrate the 200+ Hindawi journals into Wiley’s journal portfolio. You can find out more about how this benefits our journal communities on our FAQ.