Advances in Cell and Gene Therapy
Publishing Collaboration
More info
Wiley Hindawi logo
 Journal metrics
See full report
Acceptance rate24%
Submission to final decision194 days
Acceptance to publication18 days
CiteScore-
Journal Citation Indicator-
Impact Factor-

Become an Academic Editor

Advances in Cell and Gene Therapy is currently accepting applications for new Academic Editors to join the editorial board.

Find out how to apply

 Journal profile

Advances in Cell and Gene Therapy publishes original, high-quality, peer-reviewed articles covering basic and clinical research relating to advances in cell, gene, and immune therapies and their use in the treatment of a range of diseases, including cancer, genetic and immune diseases, and others.

 Editor spotlight

Chief Editor, Carol H. Miao, is Professor of Pediatrics at University of Washington and Principal Investigator in the Center for Immunity and Immunotherapies at Seattle Children's Research Institute. 

 Special Issues

Do you think there is an emerging area of research that really needs to be highlighted? Or an existing research area that has been overlooked or would benefit from deeper investigation? Raise the profile of a research area by leading a Special Issue.

Latest Articles

More articles
Research Article

Silencing of B4Galnt1 Gene Prevents GM2 Accumulation in Tay-Sachs Cells

Introduction. The Tay-Sachs disease (TSD) is a progressive neurodegenerative disorder resulting from genetic mutations in the HEXA gene encoding the α-subunit of β-hexosaminidase A leading to the accumulation of GM2 ganglioside in the central nervous system. Multiple therapeutical strategies have been investigated such as gene therapy for Tay-Sachs patients; however, there is still no cure. In the present study, we suggest a new approach for the treatment of the Tay-Sachs disease with the concept of substrate reduction therapy by using AAV9-mediated RNAi technology targeting the B4Galnt1 gene at the upstream of the enzymatic defect in TSD pathology to decrease GM2 biosynthesis and accumulation in cell models of TSD. Material and Methods. We employed AAV9-mediated shRNA transduction for mice and human Tay-Sachs cells. After transduction, expression levels of ganglioside metabolism genes were analyzed by RT-PCR and GM2 and lysosome-associated membrane protein 1 (LAMP1) protein levels were evaluated by immunocytochemistry analysis. Results. Here, we have shown that AAV9-shRNA transduction effectively reduced B4Galnt1 expression in TSD cells demonstrating a reduction in GM2 accumulation and LAMP1. Discussion. Our data shows that AAV-mediated B4Galnt1-shRNA transduction can ameliorate disease pathologies by decreasing the lysosomal accumulation of GM2 through selectively reducing B4Gant1 activity in cell models of the Tay-Sachs disease. Therefore, we suggest promising novel experimental therapy for this devastating disease using a mouse model in the future.

Research Article

Induction of Exocytosis Rescues Lysosomal GM2 Accumulation in Tay-Sachs Disease

Introduction. The Tay-Sachs disease is a progressive neurodegenerative disorder that is caused by a genetic mutation in the HEXA gene coding the lysosomal α-subunit of β-hexosaminidase A. Currently, there is no effective treatment for Tay-Sachs. Induction of exocytosis as a potential treatment approach is suggested to restore lysosomal enlargement in several lysosomal storage diseases. Here, we aimed to test the therapeutic potential of two small molecules, δ-tocopherol and hydroxypropyl-β-cyclodextrin, in fibroblast and neuroglia cells derived from Hexa-/-Neu3-/- mice and Tay-Sachs patients. Method. The effect of two small molecules on lysosomal enlargement and GM2 accumulation in lysosomes was examined by LysoTracker staining and immunocytochemical colocalization analysis for GM2 and LAMP1. qRT-PCR and fluorometric enzyme assay were also used to investigate the effect of combined treatment on the level of neuraminidase 1, a negative regulator of exocytosis. Results. Single treatment with δ-tocopherol (5-40 μM) and hydroxypropyl-β-cyclodextrin (10-50 μM) for 48 hours led to significant induction of lysosomal exocytosis. We demonstrated that the combined treatment with δ-tocopherol (10 μM) and hydroxypropyl-β-cyclodextrin (25 μM) resulted in a significant reduction of lysosomal GM2 and downregulation of lysosomal Neu1 expression. Conclusion. In this study, we demonstrated that inducing exocytosis by δ-tocopherol and hydroxypropyl-β-cyclodextrin might have therapeutic potential to reduce GM2 storage and pathology in Tay-Sachs cells.

Research Article

Comprehensive Comparison of AAV Purification Methods: Iodixanol Gradient Centrifugation vs. Immuno-Affinity Chromatography

Recombinant adeno-associated viruses (AAVs) have emerged as a widely used gene delivery platform for both basic research and human gene therapy. To ensure and improve the safety profile of AAV vectors, substantial efforts have been dedicated to the vector production process development using suspension HEK293 cells. Here, we studied and compared two downstream purification methods, iodixanol gradient ultracentrifugation versus immuno-affinity chromatography (POROS™ CaptureSelect™ AAVX column). We tested multiple vector batches that were separately produced (including AAV5, AAV8, and AAV9 serotypes). To account for batch-to-batch variability, each batch was halved for subsequent purification by either iodixanol gradient centrifugation or affinity chromatography. In parallel, purified vectors were characterized, and transduction was compared both in vitro and in vivo in mice (using multiple transgenes: Gaussia luciferase, eGFP, and human factor IX). Each purification method was found to have its own advantages and disadvantages regarding purity, viral genome (vg) recovery, and relative empty particle content. Differences in transduction efficiency were found to reflect batch-to-batch variability rather than disparities between the two purification methods, which were similarly capable of yielding potent AAV vectors.

Research Article

Therapeutic Effect of Hydrodynamics-Based Delivery of Matrix Metalloproteinase-13 Gene on Thioacetamide-Induced Liver Fibrosis in Rats

Liver cirrhosis is the final stage of chronic liver disease and can be life-threatening. Despite extensive studies on its treatment, a standard therapy is yet to be developed. Considering the complex mechanism of fibrogenic and fibrolytic processes in liver cirrhosis, combined therapy may have clinically significant effects on cirrhotic livers. In this study, we used thioacetamide (TAA) administration and matrix metalloproteinase-13 (MMP13) gene delivery to induce extracellular matrix generation and degradation in rats. The aim of this study was to determine whether hydrodynamics-based gene delivery of MMP13 to cirrhotic liver has regressive and suppressive effects on fibrogenesis. MMP13-encoding plasmids were hydrodynamically delivered to TAA-induced cirrhotic livers, and intravascular pressure was monitored. Therapeutic effect with and without continuous TAA exposure was assessed 8 weeks after the gene delivery. Test results indicated successful gene delivery and gene expression in the cirrhotic livers. Furthermore, microscopic imaging showed that MMP13 delivery resulted in significant degradation of fibrotic areas. Quantitative analysis of hydroxyproline content supported the microscopic findings. These results suggest that transgene delivery of MMP13 can be a promising candidate to treat liver fibrosis and that hydrodynamics-based gene delivery can be a good option for delivery of MMP13 to cirrhotic livers.

Research Article

Intra-Articular AAV9 α-L-Iduronidase Gene Replacement in the Canine Model of Mucopolysaccharidosis Type I

Mucopolysaccharidosis type I (MPS I), an inherited lysosomal storage disorder characterized by deficiency of α-L-iduronidase (IDUA) activity, causes multisystemic pathology due to sequelae of accumulated heparan and dermatan sulfates (HS and DS), the substrates of IDUA. Current treatments, though life-prolonging, inadequately address skeletal dysplasia and do not forestall progressive and painful degenerative joint disease. Previous studies demonstrated that intra-articular enzyme replacement cleared cellular lysosomal storage and reduced joint inflammation. Three nontolerized MPS I canines were studied to assess safety, efficacy, and durability of IDUA gene replacement therapy delivered via intra-articular injection. After baseline joint tissue biopsies, the right shoulder and stifle of each animal were injected in the intra-articular space with AAV9-IDUA and contralateral joints with AAV9-eGFP. Animals received either 5E11 or 5E12 vector genomes/joint. Necropsy was performed at 2- or 52-week postinjection. All animals tolerated injections without adverse effects. At two weeks, supraphysiologic IDUA enzyme activity was measured in AAV9-IDUA-treated but not AAV9-eGFP-treated synovium, with corresponding normalization of HS content and synoviocyte morphology. The AAV9-IDUA-treated cartilage had normal physiologic levels of IDUA enzyme, reduced but not normalized HS and DS levels compared to untreated MPS I cartilage, and healthy chondrocyte morphology. Liver IDUA transgene and IDUA enzyme activity were identified, as was serum IDUA activity which was 40% of wild-type serum enzyme activity. At 52-week postinjection, AAV9-IDUA-treated synovium and cartilage IDUA enzyme activity declined in both animals, corresponding to high tissue HS and DS levels and severe lysosomal storage. Liver and serum IDUA activity levels were undetectable. A dose-dependent serum anti-IDUA antibody response was observed which, together with loss of transgene with age, likely contributed to decline in tissue enzyme activity and treatment efficacy. Our study demonstrates successful proof-of-concept for intra-articular gene replacement therapy as a treatment for MPS-related joint dysplasia. Our observations suggest the possibility of multimodal gene replacement therapy to address multiple refractory manifestations of MPS I. Subsequent studies, in conjunction with immune tolerization and functional assessments of joint pathology, will investigate this possibility.

Review Article

Diagnostic and Therapeutic Application of Proteomics in Infectious Disease

The study of an organism’s genome, often known as “genomics,” has advanced quickly, producing a wealth of publicly accessible genetic data. Despite how valuable the genome is; proteins essentially control most aspects of cell function. Proteomics, or the comprehensive study of proteins, has emerged as an important technology for disease characterization, diagnosis, prognosis, drug development, and therapy. Proteomics technologies are now used to support the diagnosis and treatment of both infectious and noninfectious diseases. Nevertheless, it is more difficult to describe a proteomic profile since a single gene product may result in a number of unique proteins, and proteins have a wider range of chemical configurations. The proteome profiles of a particular organism, tissue, or cell are impacted by a variety of environmental factors, including those triggered by infectious agents. This review intends to highlight the applications of proteomics in the study of disease diagnosis and treatment. In this review, the different technologies used in proteomics studies, like two-dimensional gel electrophoresis, mass spectrometry, and protein microarray as well as biomarker discovery and drug target identification using proteomics, have also been focused on.

Advances in Cell and Gene Therapy
Publishing Collaboration
More info
Wiley Hindawi logo
 Journal metrics
See full report
Acceptance rate24%
Submission to final decision194 days
Acceptance to publication18 days
CiteScore-
Journal Citation Indicator-
Impact Factor-
 Submit Check your manuscript for errors before submitting

Article of the Year Award: Impactful research contributions of 2022, as selected by our Chief Editors. Discover the winning articles.