International Journal of Antennas and Propagation
 Journal metrics
See full report
Acceptance rate26%
Submission to final decision89 days
Acceptance to publication15 days
CiteScore2.900
Journal Citation Indicator0.300
Impact Factor1.5

Design of a Low Sidelobe Feed Network Based on the Louver-Shaped Defected Ground Structure

Read the full article

 Journal profile

International Journal of Antennas and Propagation publishes research on the design, analysis, and applications of antennas, along with studies related to the propagation of electromagnetic waves through space, air, and other media.

 Editor spotlight

Chief Editor, Professor Koziel, engages in research focused on surrogate-based modeling and optimization including space mapping technology for engineering design at Reykjavik University.

 Special Issues

We currently have a number of Special Issues open for submission. Special Issues highlight emerging areas of research within a field, or provide a venue for a deeper investigation into an existing research area.

Latest Articles

More articles
Research Article

A Compact Highly Isolated Four-Element Antenna System for Ultra-Wideband Applications

A small, orthogonally polarized, ultra-wideband (UWB), four-port multiple-input multiple-output (MIMO) printed antenna is presented in this study. The envisioned antenna is built up of four microstrip fractal-based circular patch elements, each of which is fed by a microstrip line with a 50-ohm impedance. The use of a defective ground plane allows for the ultra-wideband frequency response to be obtained. In order to achieve maximal isolation, the amount of surface current that flow between the antenna’s four components is limited by arranging radiating elements orthogonally. The four-port MIMO system is printed on a FR4 substrate with a loss tangent of 0.02 and an overall dimension of 20 × 30 × 1.6 mm3. A port-to-port isolation of less than 25 dB was achieved as a consequence of this orthogonal orientation of antenna elements, and the impedance bandwidth is achieved up to 158% (3.1–12 GHz). The suggested ultra-wideband multiple-input multiple-output (UWB-MIMO) antenna achieved a maximum gain of 8 dBi over the operational frequency range (3.1–12 GHz); the findings that were measured and those that were simulated accord with one another rather well. The findings also give an overall strong diversity performance, with the ECC < 0.25, DG > 9.9, and CCL < 0.2 values all being within acceptable ranges.

Research Article

Advertisement Synthesis Network for Automatic Advertisement Image Synthesis

Image advertising is widely used by companies to advertise their products and increase awareness of their brands. With the constant development of image generation techniques, automatic compositing of advertisement images has also been widely studied. However, the existing algorithms cannot synthesise consistent-looking advertisement images for a given product. The key challenge is to stitch a given product into a scene that matches the style of the product while maintaining a consistent-looking. To solve this problem, this paper proposes a new two-stage automatic advertisement image generation model, called Advertisement Synthesis Network (ASNet), which explores a two-stage generation framework to synthesise consistent-looking product advertisement images. Specifically, ASNet first generates a preliminary target product scene using Pre-Synthesis and then extracts scene features using Pseudo-Target Object Encoder (PTOE) and true target features using Real Target Object Encoder (RTOE), respectively. Finally, we inject the acquired features into the pretrained diffusion model and reconstruct them in the preliminary generated target goods scene. Extensive experiments have shown that the method achieves better results in all three performance metrics related to the quality of the synthesised image compared to other methods. In addition, we have done a simple and preliminary study on the effect of synthetic advertisement images on real consumers’ purchase intention and brand perception. The results of the study show that the advertisement images synthesised by the model proposed in this paper have a positive impact on consumer purchase intention and brand perception.

Research Article

Phase Error Criterion Based Adaptive Algorithm for Frequency Estimation

A simple phase error criterion (PEC-)-based adaptive algorithm for estimating the frequency of a complex sinusoidal signal in additive white Gaussian and impulsive noises is proposed. The proposed technique makes use of the instantaneous phase response of a first-order complex linear predictor (CLP) as a driving function to update the frequency parameter of the CLP. The proposed PEC is attractive due to its simplicity and high impulsive noise robustness. Theoretical analysis for the mean value of the estimated frequency and the steady-state mean square error (MSE) of the frequency estimate are derived in closed forms. Computer simulations are drawn to show the performance of the proposed frequency estimator.

Research Article

Propagation Characteristics and Magnetic Field Distribution of Rotating Magnet-Based Mechanical Antenna in the Air-Seawater-Seabed Three-Layer Medium

Aiming at the application requirements of underwater cross-domain communication, based on the equivalent relationship between the rotating permanent magnet and the orthogonal time-varying current loop, this paper establishes an air-seawater-seabed three-layer medium model and analyzes the magnetic field distribution and propagation characteristics of the rotating permanent magnet-based mechanical antenna (RMBMA). Based on the electromagnetic field simulation software FEKO, the influence of vertical rotation and horizontal rotation of RMBMA on the radiation magnetic field is analyzed. The magnetic field distribution and magnetic field attenuation characteristics of RMBMA at different depths are obtained by simulation. The influence of RMBMA operating frequency and magnetic moment on the propagation characteristics is studied. The research shows that the horizontal rotation of the magnetic source is better than the vertical rotation in the long-distance underwater communication. When the magnetic source and the receiving point are close to the interface of the medium, the magnetic field strength and the propagation distance can be relatively increased. With appropriate frequency and magnetic moment, the magnetic field strength and communication distance can be further increased.

Research Article

Triple-Band MIMO Antenna for 5 G Terminals

In this work, a triple-band, four-element antenna is designed for fifth-generation (5 G) terminals operating in LTE band 42 (3.4–3.6 GHz), LTE band 43 (3.6–3.8 GHz), and the new 5 G radio band (4.8–5.0 GHz). The proposed antenna array consists of two different types of antenna elements: a T-shaped element, which is connected to the feed line, and a C-shaped element, which is used to divide the bandwidth. The overall size of the proposed antenna element is only 10.5 mm × 5 mm. The multiantenna system has four antennas and is built on a 0.5-mm-thick Rogers 4003C substrate. The results for this antenna show a 10 dB measured bandwidth of 650 MHz at the center frequency of 3.6 GHz and 230 MHz at 4.9 GHz, a gain of more than 4 dBi, an isolation of more than 14 dB, and an overall radiation efficiency of more than 82%.

Research Article

Wirelessly Pattern Reconfigurable Yagi Antenna Based on Radio Frequency Identification

This paper presents, for the first time, the implementation of a pattern reconfigurable Yagi-Uda antenna utilizing radio frequency identification (RFID) technology for remote pattern control. The proposed scheme emphasizes the use of wireless communication instead of long metal cables, resulting in improved stability of the antenna’s pattern and return loss. Two low-power consumption single-pole-double-throw (SPDT) switches are employed on a passive resonator, enabling it to function as a director or reflector under the long-range control (up to 25 m) of an RFID reader. Measurement results demonstrate a −10 dB impedance bandwidth of 4.2% and a gain of 7 dBi at 2.41 GHz. The entire system operates with an ultra-low power consumption of 12 μW.

International Journal of Antennas and Propagation
 Journal metrics
See full report
Acceptance rate26%
Submission to final decision89 days
Acceptance to publication15 days
CiteScore2.900
Journal Citation Indicator0.300
Impact Factor1.5
 Submit Check your manuscript for errors before submitting

Article of the Year Award: Impactful research contributions of 2022, as selected by our Chief Editors. Discover the winning articles.