Research Article

Automated Recognition of Cancer Tissues through Deep Learning Framework from the Photoacoustic Specimen

Algorithm 1

PS-ACO-RNN cancer detection mechanism.
Input: Multispectral photoacoustic images (Mpi)
Output: Estimation of cancer state (malignant or benign)
Import the test images into the proposed model
for each images Mpi = 1 to n do           // Ant colony optimization
  Calculate transition probability
   Update pheromone (P(Mpi))
for each P(Mpi) images do
  Sk Construct the solution ()
   if fitness (Sk)<=fitness(Sbest) then
   Sbest Sk;
  end
end
While Stopping criterion not satisfied do // Particle swarm optimization
  for each image i = 1 to n do
   Sk = S(ni)
   if Sk > pbest then
   pbestn = Sk
  end
for each Sk = 1 to n do
  Pgbest=(gbest |S(ni) = max(S(kn), kϵ N(ni))
  Update velocity
  Update optimum result Finalbest
end
for each Finalbest = 1 to n do //RNN Classification
   Classifying the cancer state as malignant or benign
end for
end