Research Article
An Adaptive Genetic Algorithm Optimizes Double-Hidden Layer BPNN for Rapid Detection of Moisture Content of Green Tea in Processing
Table 5
The results of PLSR and 1d-BPNN model building with original spectra and different preprocessed spectra.
| Model | Pretreatment | Calibration model | Predictive model | | RMSECV | | RMSEP |
| PLSR | None | 0.959 | 2.36 | 0.959 | 2.53 | MSC | 0.961 | 2.35 | 0.949 | 2.83 | SNV | 0.956 | 2.45 | 0.957 | 2.60 | SG | 0.961 | 2.30 | 0.959 | 2.53 | DT | 0.966 | 2.15 | 0.961 | 2.47 | MSC-DT | 0.961 | 2.33 | 0.958 | 2.58 | SNV + DT | 0.962 | 2.31 | 0.958 | 2.56 | SG-DT | 0.963 | 2.25 | 0.962 | 2.43 |
| 1d-BPNN | None | 0.961 | 2.34 | 0.960 | 2.47 | MSC | 0.951 | 2.63 | 0.957 | 2.60 | SNV | 0.951 | 2.65 | 0.954 | 2.75 | SG | 0.958 | 2.42 | 0.959 | 2.51 | DT | 0.967 | 2.15 | 0.965 | 2.31 | MSC-DT | 0.974 | 1.83 | 0.961 | 2.43 | SNV + DT | 0.976 | 1.79 | 0.965 | 2.27 | SG-DT | 0.977 | 1.77 | 0.966 | 2.26 |
|
|