Research Article
Ceramic Hollow Fibre Constructs for Continuous Perfusion and Cell Harvest from 3D Hematopoietic Organoids
Figure 5
Dead-end filtration efficiency. (a) Viable cell filtrate collection at 1, 2.5, 4, and 6 hours of filtration. (b) Filtrate cell types after 2.5 hours of perfusion for the (left) water and (center) DMSO fibres with (right) DMSO fibre isotype. (c) Comparison of cell viability within the water (left) and DMSO (right) fibre using confocal microscopy with calcein AM (green), ethidium homodimer-1 (red), and laser reflectance (grey) (100 μm scale). (d) SEM of outer, abluminal surface of the DMSO fibre after 6 hours of dead-end filtration (20 μm scale). (e) Comparison of cells remaining within fibres after 6 hours of perfusion within the water (left) and DMSO (right) fibre by confocal microscopy detection of nuclei (DAPI; blue), red blood cell marker CD235a (green), platelet marker CD61 (yellow), plasma membranes (CellMask; red), and laser reflectance (grey) and (below) single stains of hatched box regions (100 μm scale). (f) Confocal images of a magnified traverse section of the DMSO fibre after 6 hours of filtration with (left) identical marker detection and (right) detecting only CD235a (green), CD61 (yellow), and laser reflection (grey) and (below) two stain images of nuclei and plasma membranes or CD235a and CD61 (100 μm scale).
(a) |
(b) |
(c) |
(d) |
(e) |
(f) |